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Abstract 
 

 Several approaches have been used to calculate a closed-form solution for 
an athermal bondline for mounting optical elements.  All of the previously developed 
closed-form solutions use the assumption that the bondline is thin with respect to the 
width of the bond in the axial direction.  While this assumption is mathematically 
convenient, it is not empirically or theoretically supported.  To compensate for the 
inaccuracies of these closed-form solutions, recent research using test data and 
finite element analysis has centered on generating correction factors that are applied 
to the closed-form solutions for a zero-stress bond.  In this paper an alternative 
closed-form solution is presented that incorporates the bond aspect ratio.  This 
formula is compared to the empirical results of a finite element analysis (FEA) study.  
An example case is used to compare the results provided by the different methods 
for calculating the ideal bond thickness.   
 

Symbol Definitions 
 

α Coefficient of thermal expansion (CTE) 
ν Poisson ratio of bond material 
ε Normal strain (strain) 
σ Normal stress (stress) 
δ Deflection from stress-free state 
h Bond thickness (radial direction) 
L Bond width (axial direction) 
T Temperature 
Δ Change in a variable 
r Subscript: Radial direction 
θ Subscript: Tangential direction 
z Subscript: Axial direction 
o Subscript: Lens  (optical) 
b Subscript: Bond 
c Subscript: Cell 
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1.  Introduction 
  
 Determining the ideal stress-free athermal bond has been the topic of several 
papers since the subject was first addressed by Bayar1.  The goal is to size the bond 
thickness so that the expansion of the bonding material matches the difference in 
the growth of the lens cell and the lens.  Most solutions are derived from Hooke’s 
Law matrix for three dimensional stress.  Referring only to normal stresses, Hooke’s 
Law relates the stresses on a body in three directions to the three strains on that 
body.   

This paper will first compare the existing derivations for the athermal bond 
thickness that are based on Hooke’s Law.  The different equations are a result of 
different assumptions of the way that the epoxy is constrained.  Second, an 
assumption previously not considered is used to generate new limiting case for the 
athermal bond thickness.   It will be shown that the limiting upper and lower bounds 
for athermal bond thickness are provided, respectively, by this new equation and the 
van Bezooijen equation.  The new upper bound will be called the “Modified van 
Bezooijen equation”.  Next, a derivation will be presented for a new approximation 
for the ideal athermal bond thickness that spans the space between the two limiting 
equations.  This new approximation takes into account the ratio of the bond width to 
the bond thickness, a factor that has previously been ignored except for empirically 
determined compensating correction factors.  Finally, the new approximation is 
compared to the results of finite element analysis (FEA).  
 For consistency, most diagrams and language in this paper reflect the affects 
of a system that is heated from its original bonded temperature.  All affects and 
equations also apply as the system is cooled. 
 

2. Background Information 
 

The equations for athermal bond thickness that can be derived directly from 
Hooke’s Law are listed in table 1.  The equations are listed in the order of the 
complexity of the assumptions used to generate them; this is also the order of 
increasing accuracy.  A complete list of the assumptions used for the equations 
discussed in this paper is found in appendix A.  

 
Table 1: Existing closed-formed solutions for athermal bond thickness 

 
Equation  Major Assumption 

Bayar No axial or tangential strain on the epoxy 
Modified Bayar Complete constraint of epoxy in axial and tangential directions 
van Bezooijen* Epoxy is fully constrained to the lens and the cell in the axial 

and tangential directions 
*The van Bezooijen equation is sometimes referred to as the Muench equation but 
was originally derived by Roel van Bezooijen.  
 
 Another solution was created by DeLuzio.  DeLuzio employed a different 
approach than simply using Hooke’s Law.  While DeLuzio’s equation is 
mathematically very different than van Bezooijen’s, the calculated ideal bond 
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thickness from the two equations is almost identical.  DeLuzio’s solution will only be 
discussed in this paper for comparison to the van Bezooijen equation and the other 
equations derived in this paper; it will not be derived or discussed in detail. 
 The principle of superposition will be used throughout this paper.  For each 
derivation the same principle will be used: the bond material will grow in three axes 
and then the affects of “pushing the material,” or constraining it, in one or two 
directions will be superimposed to calculate the total growth in the third direction.  
The first of the three superimposed affects is the thermal expansion of the material 
in all directions, see figure 1.   
 

  
 

Figure 1: Thermal expansion of a unit of volume 
 
 
The second affect is from compressing the cube, which is now larger, in one or two 
of the axes.  Poisson’s ratio is the material property that dictates how much the 
material will compress and how much it will be forced out in the directions that it is 
not being compressed, see figure 2. 
 

 
Figure 2: Constrained thermal expansion (blue); isometric and top views of a unit volume 

 
In figure 2 the thermal expansion is shown to be fully constrained in two directions.  
It may also be constrained in only one direction or partially constrained in one 

Δh 

Δh 
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direction.  For the limiting Poisson’s ratio of .5, the problem becomes one of volume 
conservation; the material is incompressible. 
  
 

3.  Bayar’s Equation 
 

The simplest of the three equations commonly used for calculating bondline 
thickness is the Bayar equation.  Bayar only looks at the radial thermal expansion 
and ignores the affects of constraining the bond axially and tangentially.  Figure 1 
defines the terms that will be used for Bayar’s Equation and all other equations. 

 
 

 
 

Figure 1. Typical Athermal Lens Mount 
 
Note that in figure 1 the lens bond width, L, does not necessarily need to equal the 
size of the lens or the mount.  It is drawn this way to simplify figures later in the 
document.  The Bayar equation is derived by solving for the bondline thickness 
when equating the change in the bondline thickness over temperature to the 
difference in the changes of the cell and the optical radii over temperature: 
 

oc rrh Δ−Δ=Δ   
TrThrTh oocob Δ−Δ+=Δ ααα )( .                     (1) 

rc 

ro 
h 

L

LENS CELL

BOND

Cell Radius:       rc = dc/2 
 
Optical Element Radius:  ro = do/2 
 
Bondline Thickness:      h = rc - ro 

 
Bond Width:       L 

z 

r 

θ 
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Solving for h, it can be seen that the thickness of the bond is a function of the optical 
radius and the three CTEs, as follows:      
    

cb

ocorh
αα
αα

−
−

=
)(          (2) 

 
Equation (1) can also be used to calculate the radial strain, if it is not assumed to be 
zero, where radial strain is a function of radial deflection.  The radial deflection, δh, is 
defined as the change in thickness of the bond material from its unconstrained 
thickness with any given change in temperature: 
 

( ))()( ococb rhTh ααααδ −−−Δ=
 

The radial strain, εr, is given by the ratio of the deflection to the radial distance:   
 

⎟
⎠
⎞

⎜
⎝
⎛ −−−Δ== )( oc

o
cbr h

rT
h
h ααααδε        (3) 

 
The resulting equation (3) will be used later in the paper.   
 

Two facts are worthy of note at this time.  First, if it were possible to match the 
CTEs of all three of the materials, then any bond thickness is allowable.  
Unfortunately this is typically not possible because of the inherent properties of the 
available materials and because of cost limitations.  For most situations, and for the 
purposes of this paper, we assume that the CTEs of the three materials are different.  
Next we know that the CTE of the cell must be less than that of the optical element; 
if this were not the case, then the CTE of the bonding material would need to be 
negative.  Since negative CTE bond materials are generally not available, it follows 
that oc αα > .  Finally, the CTE of the bond must be the greatest CTE of the three 
because its thickness will always be less than the inner diameter of the cell.  
Accordingly, the following relationship must apply: 

 
ocb ααα >>  

 
 We are fortunate that materials are readily available that meet this criteria.  
Metals are typically used as cell materials and glasses are commonly used for 
lenses and as mirror substrates.  Most metals have about twice the CTE of most 
glasses.  Bonding materials tend to have CTEs that are an order of magnitude 
greater than both the lens and the cell. 
 

4.  Modified Bayar – Including Bulk Affects 
 

 In order to derive the several other formulas for athermal bond thickness, 
Hooke’s Law for stress will be used.  Hooke’s Law is frequently presented as a 
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matrix that defines all six of the normal and shear stresses, but in this case we are 
only concerned with radial stress.  Hooke’s Law reduces to equation (4) for radial 
stress: 
 

[ ])()1(
)21)(1( θεενεν

νν
σ ++−

−+
= zrr

E       (4) 

 
The same methodology will be used for all of the derivations that follow: 

expressions for the three strains will be substituted into Hooke’s Law, equation (4), 
and the resulting equation will be solved for the zero radial stress condition.  For all 
derivations, equation (3) is substituted for the radial strain.  For consistency, Bayar’s 
original equation is derived again in this way.  The complete derivation, showing all 
of the algebraic steps will be shown only for the van Bezooijen equation; the others 
are very similar.  
 
Bayar 
 

Bayar considers the strain in the axial and tangential directions to be zero.  In 
other words, the bond layer is free to expand or contract in these directions.  
Substituting equation (3) into equation (4) and setting εz and εθ  to zero results in 
equation (5) for radial stress. 
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The radial stress is set to zero and the resulting equation is solved for the bond 
thickness: 
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The resulting equation (6) is identical to equation (2) derived earlier. 
 
Modified Bayar 
 

The Modified Bayar equation, as presented by Herbert4, affords a major 
improvement over the original Bayar equation.  The Modified Bayar equation 
accounts for strains normal to the radial direction and it incorporates the Poisson 
ratio.  The assumption used for this equation is that the strains in the tangential and 
axial directions are equal to the expansion of the bond layer in those directions.  In 
other words, the bond is fully constrained to its original unheated size in both the 
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axial and tangential directions.  Again using equation (3) in equation (4) with the 
additional assumption regarding the tangential and axial strains, the Modified Bayar 
equation and the solution h are as follows: 

 
bz Tαεε θ Δ==  
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Figure 3 shows the different assumptions of the Bayar and Modified Bayar 

equations.  The axial and tangential constraint used for the Modified Bayar equation 
results in greater radial bond growth than the unconstrained assumption that Bayar 
used for calculating equation (6).  The increased growth causes the calculated ideal 
athermal bond to be thinner.  This can be seen in equation (8), as the denominator 
gets bigger when compared to the Bayar equation (6). 
 

 
 

Figure 3: Comparison of Bayar (red) and Modified Bayar (blue) assumptions 
 

5.  Van Bezooijen Equation – Including the CTE of the Lens and Cell 
 

Van Bezooijen7 improves the approximation of the Modified Bayar equation 
by accounting for the expansion of the lens and the lens cell in the tangential and 
axial directions.  The strain in these directions is described in equation (9).  The 
strain is derived for the axial direction but also applies to the tangential direction. 
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This formula uses the average change in the size of the lens and the cell to 
approximate the reduction in strain from the Modified Bayar assumption.  This is a 
good approximation considering the bond is thin compared to the radial distance 
from the lens axis.  Figure 4 graphically shows the nature of the affects of 
temperature change on the system.  The figure is not to scale.  

 
Figure 4: Representation of the deformation of the lens, cell, and bond used when  

calculating the van Bezooijen equation; cross section is shown, not to scale 
 
A complete derivation of the van Bezooijen equation follows.  Once again, equation 
(3) is substituted into (4) for the radial strain.  In this case, equation (9) is substituted 
for the axial and tangential strains. 
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The stress is set to zero and the equation is simplified. 
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 Figure 5 compares the van Bezooijen assumption with the Modified Bayar 
assumption.  It can be seen that for the van Bezooijen assumption the lens cell 
expands, allowing the bond material to expand slightly as well.  For simplicity, a zero 
CTE lens is used for the comparison.  Figure 5 also shows that the bond expands 
slightly less in the radial direction than it does under the Modified Bayar assumption.  
The reduced growth results in a calculated ideal bond thickness that is greater than 
the ideal thickness calculated by the Modified Bayar equation. 
 
 

         
 

Figure 5: Comparison of Modified Bayar (blue) and van Bezooijen (pink) assumptions;  
isometric and top views shown 

 
 

An example system is compared in figure 6.  The graph compares the 
calculated bond thickness using the Bayar, Modified Bayar, van Bezooijen, and 
DeLuzio, and equations.  A dramatic difference can be seen between the Bayar 
equation and the others.  The original Bayar equation calculates a thicker bondline 
because it does not include the expansion of the bond radially due to constraining 
the axial and tangential directions.  The Modified Bayar curve sits below the others 
because it does not incorporate the thermal expansion of the lens and cell, 
effectively “squeezing harder” on the bond and forcing it out further in the radial 
direction when the system is heated.  The van Bezooijen and DeLuzio curves –
virtually on top of each other – provide for the thermal expansion of the lens and cell, 
and thus calculate a slightly larger thermal bond.  The DeLuzio equation is shown in 
appendix B. 
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Figure 6:  Plot of Bayar, Modified Bayar, van Bezooijen, and DeLuzio equations for an example 

system across the full span of typical bond material Poisson ratios 
 
 The van Bezooijen equation is the closest to correctly accounting for all of the 
constraints on the bond, making it the most accurate of the equations that can be 
derived from Hooke’s Law.  The assumption of van Bezooijen is that the bond is fully 
constrained to the lens and the cell.  In reality this is not the case, the bond is 
allowed to bulge or shrink at its exposed surfaces.  Because of its assumption of 
complete constraint, this equation does not calculate the ideal bond thickness, but 
rather it serves as a limit.  Van Bezooijen slightly over constrains the bond, causing 
to grow more than it actually does and calculating too thin of a bond.  The lower limit 
for the ideal bond thickness is therefore the thickness calculated by the van 
Bezooijen equation. 
 

6.  Modified van Bezooijen – The Upper Limit 
 

The van Bezooijen was shown to be the lower limit to the ideal bond 
thickness; an upper limit is also needed.  The upper limit is derived by making the 
opposite assumption of the van Bezooijen for axial strain.  For this derivation the 
bond will be assumed to be completely unconstrained in the axial direction.  This 
means that the axial strain is assumed to be zero.  The tangential and radial strains 
are the same as for the original van Bezooijen derivation.   
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The difference between the von Bezooijen equation (11) and this newly proposed 
modified equation (13) is a factor of 2 on the third term in the denominator.  The van 
Bezooijen and Modified van Bezooijen equations define the lower and upper bounds 
for the correct bond thickness. 

The factor that determines where the actual ideal bond thickness lies between 
these two extremes is the bond aspect ratio.  All of the standard bond thickness 
equations (Bayar, Modified Bayar, and van Bezooijen) neglect the impact of the 
aspect ratio on the performance of the bond.  The aspect ratio is defined as the ratio 
of the bond width to the bond thickness. 

 

h
LRaspect =       (14) 

 
 The standard equations all assume a large aspect ratio for the bond so the 

edge affects of the exposed surfaces are negligible.  However, if the aspect ratio is 
small, the axial strain can no longer be assumed to be completely constrained in this 
way.  For extremely low aspect ratios the strain in axial direction can be set to zero 
because as the width of the bond, L, approaches zero, bulge of the bond at 
temperature is the dominant affect.  For low aspect rations the axial constraint of 
being adhered to the lens and cell can be neglected; the modified van Bezooijen 
represents this case.   
 

7.  Aspect Ratio Approximation 
 

Now that the two limiting cases have been defined, a relationship is needed 
that spans the region between them.  The aspect ratio is required in order to derive a 
new equation that spans this space.  To incorporate the aspect ratio, we let the 
Modified van Bezooijen equation represent an aspect ratio of one.  In other words, 
the assumption is made that, if the width of the bond is equal to the thickness of the 
bond, then the bond behaves as though it is not constrained in the axial direction.  
The “fraction of axially constrained bond” is then defined as follows: 
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This relationship is shown graphically in figure 7, where the unconstrained portions 
of the bond are highlighted.  This is clearly an approximation; in reality, the edges of 
the bond are not completely unconstrained and the center of the bond is not fully 
constrained. 
 

 
 

Figure 7: Bond with an aspect ratio of 1 compared to a more typical bond cross section 
 
The formula for stress then becomes: 
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Note the coefficient of the last term is ⎟
⎠
⎞

⎜
⎝
⎛ −

L
h2 , which can assume values between 1 

and 2 for values of L between h and infinity.  Recall that the coefficient of this last 
term in the denominator of the van Bezooijen equation, (11), is 2 and coefficient of 
the same term the Modified van Bezooijen equation, (13), is 1.  Computations of h 
will indeed be bounded by those two equations.  Equation (17) is shown to 
demonstrate the similarities between this formula and the previously derived 
formulas for bond thickness, it does not explicitly solve for h, however.  The 
quadratic formula is required to formulate the complete closed-form solution.   
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The alternate solution to the quadratic formula (the solution having the minus sign 
before the square root) is associated with unrealistic values of the bond width and is 
a result of the aspect ratio approximation only being valid for bond widths between 1 
and infinity.  Figure 8 compares the assumptions of the van Bezooijen and aspect 
ratio approximation equations.  As before, a zero CTE lens is used for the 
comparison.  The aspect ratio approximation expands less in the radial direction 
because it is allowed to bulge at the exposed top and bottom surfaces.  Accounting 
for this additional bulging results in a calculated ideal bond thickness that is greater 
than the thickness calculated by the van Bezooijen equation. 
 

        
 

Figure 8: Comparison of van Bezooijen (pink) and aspect ratio approximation assumptions;  
isometric and top views shown 

 
A cross section is shown in figure 9 that includes the lens and cell.  Figure 9 
demonstrates the bulging that occurs at the free surfaces when the system is heated 
and the shrinkage of the bond that occurs when the system is cooled.   
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Figure 9: Representation of the deformation of the lens, cell, and bond used when  
calculating the aspect ratio approximation; cross section is shown, not to scale. 

  
  
A graphical comparison of the van Bezooijen, Modified van Bezooijen, and aspect 
ratio approximation methods is shown for various aspect ratios in an example 
system in figure 10.  As the aspect ratio approaches one, the approximate solution 
approaches the Modified van Bezooijen equation.  The example system with the 
bond width equal to 0.25 is identical to the example system presented by Herbert4.   
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Figure 10: Comparison of van Bezooijen, modified van Bezooijen, and the aspect ratio approximation 
for three different aspect ratios across the full span of typical bond material Poisson ratios 

 
8.  Comparison to FEM Data 

 
A modified Hooke’s Law matrix was developed by Michaels and Doyle5 that 

incorporates correction factors.  Michaels and Doyle present the results of data they 
complied from FEM analysis.  They used the results of their study to empirically 
determine correction factors to be applied to Hooke’s Law.  The result of their work 
for radial stress is: 
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The correction factors are k11, k12, and k13, which are available in tabular form as 
functions of the bond aspect ratio and Poisson’s ratio.  Equations (3) and (9) are 
plugged into the radial stress equation resulting in a formula for stress in terms of the 
correction factors.  This equation is then solved for the bond thickness. 
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The correction factor k11 drops out of the equation for bond thickness.  The result is 
a direct connection with equation (17).  The two expressions are related: 
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The two expressions above are compared in Figure 11.  The FEA data were 
collected for several values of the Poisson ratio, all values in the relatively narrow 
range of 0.45 and above.   
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Figure 11: Comparison of the correction factor as calculated by the aspect ratio approximation  

to the correction factor from FEA data for several Poisson ratios 
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The coefficient calculated by the aspect ratio approximation is shown to be 
very close to the tabulated coefficient gathered from FEA data.  The relationship is 
particularly close for aspect ratios greater than four.  The benefit of the aspect ratio 
approximation is that it provides a closed-form solution.  During the design process 
any values for the bond width (L), lens diameter (ro), bond material Poisson Ration 
(v), and CTEs (αo, αb, αc) can be used to calculate an approximate ideal bond 
thickness.  There is no need to refer to a table of correction factors and to iterate to a 
solution.  
 

9.  Conclusion 
 

A new closed-form solution for the ideal athermal bond thickness was 
developed.  The solution was generated by incorporating the bond aspect ratio in 
order to span the space between the two limiting cases for athermal bond thickness.   
The lower limit was shown to be the equation originally developed by van Bezooijen; 
a newly derived upper limit was formulated by allowing for the bond to be 
unconstrained in the axial direction.  Finally, the aspect ratio approximation solution 
was derived and compared to empirical data derived from FEA.  The closed-form 
solution is shown to be quite close to the tabulated results from the FEA data. 

The closed-form solution derived in this paper is the closest approximation to 
the ideal athermal bond thickness presented to date.  It should be used for 
calculations when the zero radial stress condition is critical.  The new equation still 
makes several assumptions; the assumptions of all the equations discussed in this 
paper are summarized in appendix A.  One of the most important assumptions, 
common to all equations, is that there is a linear CTE for all materials. Since this 
assumption generally is valid only when temperature changes are relatively small, 
the approximation becomes less accurate when applied across wide temperature 
ranges.  The detailed description of the assumptions used for each derivation should 
aid the reader in deriving approximations for more complicated geometries. 
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Appendix A:  Table of Athermal Bond Equations 
 
Name of Equation # Assumptions Benefit 
Bayar 2, 

6 
-Unconstrained in axial and tangential 
directions 

First order approximation 

Modified Bayar 8 -Perfectly constrained in axial and tangential 
directions – no thermal expansion of cell and 
lens in those directions 
-No axial bulging of bond 
-Low aspect ratio 

Much closer to correct 
solution than Bayar 

Van Bezooijen 
(Muench) 

11 -Perfectly constrained to the expanding and 
contracting lens and cell 
-No axial bulging of bond 
-Low aspect ratio 

Closer to the real solution 
than the modified Bayar.  
Serves as the lower limit to 
the correct solution. 

Modified van 
Bezooijen 
(Modified Muench) 

13 -Perfectly constrained in tangential direction 
to the expanding and contracting lens and 
cell 
-Unconstrained in the axial direction 
-Large aspect ratio 

Serves as the upper limit 
to the correct solution. 

Aspect Ratio 
Approximation 

18 -The correct model for the aspect ratio is 
used 

The closest closed-form 
solution for athermal 
bondline thickness 

FEM Data 
Corrected 

19 -FEM methodology is correct Perhaps the most accurate 
calculation for optimal 
solution 

All NA -Constant CTEs 
-Cell and lens are infinitely stiff 
-Zero stress bond at cure temperature (zero 
shrinkage) 
-Constant Poisson ratio 
-No thermal gradient 

NA 

 
 
 
 
 

Appendix B:  The DeLuzio Equation 
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